Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
نویسندگان
چکیده
The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for most subjects, indicating that subjects used different patterns of interjoint coordination in slow and fast movements while nevertheless preserving the shape of their finger trajectory. Higher movement speeds did not disrupt the arm joint rotations despite the larger interaction torques generated. Rather, subjects used the redundant degrees of freedom of the arm/trunk system to achieve similar finger trajectories with differing joint configurations. We examined finger movement patterns and velocity profiles to determine the frame of reference in which turn-and-reach movements could be most simply described. Finger trajectories of turn-and-reach movements had much larger curvatures and their velocity profiles were less smooth and less bell-like in trunk-based coordinates than in external coordinates. Taken together, these results support the conclusion that turn-and-reach movements are controlled in an external frame of reference.
منابع مشابه
Reach plans in eye-centered coordinates.
The neural events associated with visually guided reaching begin with an image on the retina and end with impulses to the muscles. In between, a reaching plan is formed. This plan could be in the coordinates of the arm, specifying the direction and amplitude of the movement, or it could be in the coordinates of the eye because visual information is initially gathered in this reference frame. In...
متن کاملIpsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.
When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performe...
متن کاملBehavioral reference frames for planning human reaching movements Running head: Reference frames in reach planning
At some stage in the process of a sensorimotor transformation for a reaching movement, information about the current position of the hand and information about the location of the target must be encoded in the same frame of reference in order to compute the hand-to-target difference vector. Two main hypotheses have been proposed regarding this reference frame: an eye-centered frame and a body-c...
متن کاملSpatial transformations for eye-hand coordination.
Eye-hand coordination is complex because it involves the visual guidance of both the eyes and hands, while simultaneously using eye movements to optimize vision. Since only hand motion directly affects the external world, eye movements are the slave in this system. This eye-hand visuomotor system incorporates closed-loop visual feedback but here we focus on early feedforward mechanisms that all...
متن کاملSaccade-related activity in the parietal reach region.
In previous experiments, we showed that cells in the parietal reach region (PRR) in monkey posterior parietal cortex code intended reaching movements in an eye-centered frame of reference. These cells are more active when an arm compared with an eye movement is being planned. Despite this clear preference for arm movements, we now report that PRR neurons also fire around the time of a saccade. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2003